
MATH1520 University Mathematics for Applications Spring 2021

Chapter 6: Application of Derivatives I

Learning Objectives:
(1) Apply L’Hôpital’s rule to find limits of indeterminate forms.
(2) Discuss increasing and decreasing functions.
(3) Define critical points and relative/absolute extrema of real functions of 1 variable.
(4) Use the first derivative test to study relative/absolute extrema of functions.

6.1 Limits of indeterminate forms and L’Hôpital’s rule

Recall the Remark in the end of Section 2.4 regarding exceptional cases of limits, which can
not be computed using the algebraic rules of limits in Proposition 2, but the limits might still
exist. Limits of this type are said to be of indeterminate forms.

6.1.1 Limits of indeterminate forms
0

0
,
1
1

Consider lim
x!a

f(x)

g(x)
,

1. if lim
x!a

f(x) = A, lim
x!b

g(x) = B 6= 0, A,B 2 R, then by the quotient rule,

lim
x!a

f(x)

g(x)
=

lim
x!a

f(x)

lim
x!a

g(x)
=

A

B
.

2. if lim
x!a

f(x) = lim
x!a

g(x) = 0 (±1), then the quotient rule is not applicable. Limits of

this type are said to be of indeterminate form type
0

0
or type 1

1

For example,

lim
x!1

x2 � 1

x3 � 1
,

✓
type

0

0

◆

lim
x!+1

x+ 1

2x+ 3
, lim

x!+1

�x+ 1

2x3
,

⇣
type

1
1

⌘
.
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Theorem 6.1.1 (L’Hôpital’s rule for limits of types
0

0
,
1
1).

Let f(x), g(x) be differentiable and suppose that g0(x) 6= 0 near the point a.

If
lim
x!a

f(x) = lim
x!a

g(x) = 0 or lim
x!a

f(x) = lim
x!a

g(x) = ±1,

then
lim
x!a

f(x)

g(x)
= lim

x!a

f 0(x)

g0(x)
.

Remark. (a) An intuitive explanation: When f(a) ⇡ 0 ⇡ g(a),

f(x)

g(x)
⇡ f(x)� f(a)

g(x)� g(a)
=

f(x)�f(a)
x�a

g(x)�g(a)
x�a

.

(b) The statement of the theorem still holds if “x ! a” is replaced by “x ! ±1” or “x ! a±”.
It also holds if limx!a f(x) = ±1 lim

x!a
g(x) = ⌥1. (Use limx!a

f(x)
g(x) = � limx!a

�f(x)
g(x) and

apply the theorem to limx!a
�f(x)
g(x) .)

Example 6.1.1. Limits of type
0

0

1.

lim
x!1

x2 � 1

x3 � 1
(check condition 1:

0

0
)

= lim
x!1

2x

3x2
(check condition 2: this limit is

2

3
)

=
2

3
.

Remark. Alternatively, use the “canceling common factors” trick in the previous chap-
ters.

2.

lim
x!1

ex � ep
x� 1

(the limit is of type
0

0
)

= lim
x!1

ex

1
2x

� 1
2

=2e.

Idina dererninateaI7aiiiEo ee
mo.sestxi5agri einofthis as a

0 isflea
a pwI0

fimYEgGia.cx's
to

GiggleD is

lying Type L'Hapitatsarpuffies

0

f L'Honpital'srule

m 76 e e e o

d iHapital's figCrxD 1 1 0
applies

lgebraicruleworks
limex

x iExkhim I
z



Chapter 6: Application of Derivatives I 6-3

3.

lim
x!0+

ln(1 + x)

x2
(type

0

0
)

= lim
x!0+

1
1+x

2x

=+1.

Example 6.1.2. Limits of type
1
1

1.

lim
x!+1

�x+ 1

2x+ 3
(type

1
1)

= lim
x!+1

�1

2

=� 1

2
.

Remark. The same result can be obtained by dividing both the numerator and the
denominator by x.

2.

lim
x!+1

lnx

xn
, n 2 N (type

1
1)

= lim
x!+1

1
x

nxn�1

= lim
x!+1

1

nxn

=0.

Remark.

1. L’Hôpital’s rule can NOT be applied for determinate form.

For example, lim
x!1

x+ 1

x+ 2
=

2

3
, but lim

x!1

(x+ 1)0

(x+ 2)0
=

1

1
= 1.

2. If lim
x!a

f 0(x)

g0(x)
is still

0

0
,
1
1 , then repeat L’Hôpital’s rule.

3. L’Hôpital’s rule can be used to justify the previous assertion that as x ! 1, higher de-
gree polynomials “grows faster” than lower degree polynomials; exponential functions
grow faster than any polynomials; log functions grow slower than any polynomials.
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Exercise 6.1.1.

1. lim
x!1

x� 1

lnx
= 1

2. lim
x!+1

xn

ex
= 0

Example 6.1.3. (Applying L’Hôpital’s rule twice.)

lim
x!0

ex � e�x � 2x

x2
(type

0

0
)

= lim
x!0

ex + e�x � 2

2x
( still of type

0

0
)

= lim
x!0

ex � e�x

2

=0

6.1.2 Other Indeterminate Forms: 0 ·1, 1�1, 00, 11, 10

All these forms can be converted to forms of types 0
0 or 1

1 .

Example 6.1.4. Type 0 ·1

lim
x!0+

(x lnx) (0 ·1)

= lim
x!0+

lnx
1
x

(
1
1)

= lim
x!0+

1
x

� 1
x2

= lim
x!0+

(�x)

=0.
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Example 6.1.5. Type 1�1

lim
x!0+

✓
1

x
� 1

ex � 1

◆
(1�1)

= lim
x!0+

ex � 1� x

x(ex � 1)
(
0

0
)

= lim
x!0+

ex � 1

ex � 1 + xex
( still

0

0
)

= lim
x!0+

ex

ex + ex + xex

=
1

2
.

Example 6.1.6. Types 11,10, 00

Trick: fg = eln fg
= eg ln f

1.

lim
x!+1

x
1
x (10)

= lim
x!+1

eln(x
1
x )

= lim
x!+1

e
1
x lnx

=e
lim

x!+1

1

x
lnx

,

lim
x!+1

1

x
lnx (0 ·1)

= lim
x!+1

lnx

x
(
1
1)

= lim
x!+1

1
x

1

=0.

So,
lim

x!+1
x

1
x = e0 = 1.

2.

lim
x!1+

x
1

1�x (11)

= lim
x!1+

e
1

1�x lnx

=e
lim

x!1+

lnx

1� x ,

e
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lim
x!1+

lnx

1� x
(
0

0
)

= lim
x!1+

1
x

�1

=� 1.

So,
lim

x!1+
x

1
1�x = e�1.

3.

lim
x!0+

xx (00)

= lim
x!0+

ex lnx

=e
lim

x!0+
x lnx

,

lim
x!0+

x lnx (0 ·1)

= lim
x!0+

lnx
1
x

(
1
1)

= lim
x!0+

1
x

� 1
x2

= lim
x!0+

(�x)

=0.

So,
lim

x!0+
xx = e0 = 1.

6.2 Monotonicity of Functions and the First Derivative Test

6.2.1 Monotonicity: Increasing/Decreasing Functions

Definition 6.2.1. Let f(x) be a function defined on (a, b). Then

1. f(x) is increasing on the interval if f(x2) � f(x1) whenever x2 > x1.

2. f(x) is strictly increasing on the interval if f(x2) > f(x1) whenever x2 > x1.

3. f(x) is decreasing on the interval if f(x2)  f(x1) whenever x2 < x1.

4. f(x) is strictly decreasing on the interval if f(x2) < f(x) whenever x2 > x1.
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Caveat! The preceding definition is the mathematicians’ definition of increasing/decreasing
functions. However, some calculus texts define increasing/decreasing functions differently,
e.g. [Hoffmann et al.], where “increasing/descreasing functions” refer to the “strictly
increasing/descreasing functions” defined above.

Theorem 6.2.1. Let f be a differentiable function on (a, b).

1. If f 0(x) � 0 for all x 2 (a, b), then f(x) is an increasing function.

2. If f 0(x) > 0 for all x 2 (a, b), then f(x) is a strictly increasing function on (a, b).

3. If f 0(x)  0 for all x 2 (a, b), then f(x) is a decreasing function.

4. If f 0(x) < 0 for all x 2 (a, b), then f(x) is a strictly decreasing function on (a, b).

Example 6.2.1. Show that f(x) = ex � x� 1 is a strictly increasing function on (0,1).

Solution. f 0(x) = ex � 1 > 1� 1 = 0. So f(x) is a strictly increasing function. ⌅

Remark. Because f(x) is a strictly increasing function, f(x) > f(0) = 0 for x > 0, i.e.

ex > 1 + x, for x > 0.
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Procedure to determine intervals of increase/decrease of f

1. Find all c such that f 0(c) = 0 or f 0(c) is undefined. Divide the line into several intervals.

2. For each intervals (a, b) obtained in the previous step.

(a) If f 0(x) > 0, f(x) is a strictly increasing function (") on (a, b).

(b) If f 0(x) < 0, f(x) is a decreasing function (#) on (a, b).

Example 6.2.2. Find the intervals in which the function

f(x) = 2x3 + 3x2 � 12x� 7

is strictly increasing/strictly decreasing.

Solution.
f 0(x) = 6x2 + 6x� 12 = 6(x+ 2)(x� 1) = 0 ) x = �2, 1.

So we have 3 intervals: (�1,�2), (�2, 1), (1,1).

In (�1,�1), x+ 1 < 0, x� 1 < 0, so f 0(x) > 0.
In (�1, 1), x+ 1 > 0, x� 1 < 0, so f 0(x) < 0.
In (1,+1), x+ 1 > 0, x� 1 > 0, so f 0(x) > 0.

x (�1,�2) �2 (�2, 1) 1 (1,+1)
f 0(x) + 0 � 0 +

monotonicity " # "

Figure 6.1: y = 2x3 + 3x2 � 12x� 7
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